Involvement of reactive oxygen species derived from mitochondria in neuronal injury elicited by methylmercury

نویسندگان

  • Yasuhiro Ishihara
  • Mayumi Tsuji
  • Toshihiro Kawamoto
  • Takeshi Yamazaki
چکیده

Methylmercury induces oxidative stress and subsequent neuronal injury. However, the mechanism by which methylmercury elicits reactive oxygen species (ROS) production remains under debate. In this study, we investigated the involvement of mitochondrial ROS in methylmercury-induced neuronal cell injury using human neuroblastoma SH-SY5Y-derived ρ0 cells, which have a deletion of mitochondrial DNA and thus decreased respiratory activity. SH-SY5Y cells were cultured for 60 days in the presence of ethidium bromide to produce ρ0 cells. Our ρ0 cells showed decreases in the cytochrome c oxidase expression and activity as well as oxygen consumption compared with original SH-SY5Y cells. Methylmercury at a concentration of 1 µM induced cell death with oxidative stress in original SH-SY5Y cells, but not ρ0 cells, indicating that ρ0 cells are resistant to methylmercury-induced oxidative stress. ρ0 cells also showed tolerance against hydrogen peroxide and superoxide anion, suggesting that ρ0 cells are resistant to total ROS. These data indicate that mitochondrial ROS are clearly involved in oxidative stress and subsequent cell death induced by methylmercury. Considering that the dominant mechanism of ROS generation elicited by methylmercury is due to direct antioxidant enzyme inhibition, mitochondria might play a role in amplifying ROS in methylmercury-induced neurotoxicity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

O 22: Reactive Oxygen Species and Epilepsy

Seizure activity has been proposed to result in the generation of reactive oxygen species (ROS), which then contribute to seizure-induced neuronal damage and eventually cell death. Although the mechanisms of seizure-induced ROS generation are unclear, mitochondria and cellular calcium overload have been proposed to have a crucial role. We aim to determine the sources of seizure-induced ROS and ...

متن کامل

Involvement of glutamate and reactive oxygen species in methylmercury neurotoxicity.

This review addresses the mechanisms of methylmercury (MeHg)-induced neurotoxicity, specifically examining the role of oxidative stress in mediating neuronal damage. A number of critical findings point to a central role for astrocytes in mediating MeHg-induced neurotoxicity as evidenced by the following observations: a) MeHg preferentially accumulates in astrocytes; b) MeHg specifically inhibit...

متن کامل

Neuroprotection of a sesamin derivative, 1, 2-bis [(3-methoxy- phenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) against ischemic and hypoxic neuronal injury

Objective(s): Stroke may cause severe neuronal damage. The sesamin have been demonstrated to possess neuroprotection by its antioxidant and anti-inflammatory properties. One sesamin derivative was artificially composited, 1, 2-bis [(3-methoxyphenyl) methyl] ethane-1, 2-dicaroxylic acid (MMEDA) had been developed to study its antioxidative activity and neuroprotection. Materials and Methods: The...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

Identification of Intracellular Sources Responsible for Endogenous Reactive Oxygen Species Formation

The endogenous reactive oxygen species ("ROS") formation is associated with many pathologic states such as inflammatory diseases, neurodegenerative diseases, brain and heart ischemic injuries, cancer, and aging. The purpose of this study was to investigate the endogenous sources for "ROS" formation in intact isolated rat hepatocytes, in particular, peroxisomal oxidases, monoamine oxidase, xanth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2016